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We discuss the production of top–anti-top quark pairs in association with a hard jet at the Tevatron

and at the LHC and we report on the calculation of the next-to-leading order QCD corrections to

this process. Numerical results for the tt̄+jet cross section and the forward–backward charge

asymmetry are presented. The corrections stabilize the leading-order prediction for the cross

section. In contrast, the charge asymmetry receives large corrections. The dependence of the

cross section as well as the asymmetry on the minimum transverse momenta used to define the

additional jet is studied in detail for the Tevatron.
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1. Introduction

The top quark is the heaviest of the known elementary particles. More than ten years after
its discovery, the dynamics and many properties of the top quark, such as its electroweak quantum
numbers, are not yet precisely measured. It is widely believed that the top quark plays a key role
in extensions of the Standard Model. This renders experimental investigations of the top quark
particularly important. Up to now the main (direct) source of information on top quarks are top-
quark pairs produced at the Tevatron. Only recently first evidence for single-top production has
been found [1]. It is important to note that in the inclusive tt̄ sample a significant fraction comprises
tt̄+jet events. An investigation of the process of tt̄ production in association with a hard jet can thus
improve our knowledge about the top quark.

In this context, the forward–backward charge asymmetry of the top (or anti-top) quark [2,
3, 4, 5] is of particular interest. In inclusive tt̄ production it appears first at one loop, because it
results from interferences of C-odd with C-even parts of double-gluon exchange between initial
and final states. This means that the available prediction for tt̄ production—although of one-loop
order—describes this asymmetry only at leading-order (LO)accuracy. In t̄t+jet production the
asymmetry appears already in LO. Thus, the next-to-leadingorder (NLO) calculation described in
the following provides a true NLO prediction for the asymmetry. Our calculation will, therefore,
be an important tool in the experimental analysis of this observable at the Tevatron where the
asymmetry is measureable as discussed in Ref. [5].

Measuring the cross section of the related process of tt̄+γ production provides direct access
to the electric charge of the top quark. Obviously NLO QCD predictions to this process are im-
portant for a reliable analysis. They can be obtained from tt̄+jet production presented here via
simple substitutions. Finally, a signature of tt̄ in association with a hard jet represents an impor-
tant background process for searches at the LHC, such as the search for the Higgs boson in the
weak-vector-boson fusion or tt̄H channels.

The above-mentioned issues clearly underline the case for an NLO calculation for t̄t+jet pro-
duction at hadron colliders. We report here on a first calculation of this kind as presented in Ref. [6].

2. Details of the NLO calculation

At LO, hadronic t̄t+jet production receives contributions from the partonic processesqq̄→ tt̄g,
qg→ tt̄q, q̄g→ tt̄q̄, andgg→ tt̄g. The first three channels are related by crossing symmetry tothe
amplitude 0→ tt̄qq̄g. Evaluating 2→ 3 particle processes at the NLO level, is non-trivial, both
in the analytical and numerical parts of the calculation. Inorder to prove the correctness of our
results we have evaluated each ingredient twice using independent calculations based—as far as
possible—on different methods, yielding results in mutualagreement.

2.1 Virtual corrections

The virtual corrections modify the partonic processes thatare already present at LO. At NLO
these corrections are induced by self-energy, vertex, box (4-point), and pentagon (5-point) correc-
tions. The most complicated diagrams are the pentagon diagrams.
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Version 1 of the virtual corrections is essentially obtained following the method described in
Ref. [7], where t̄tH production at hadron colliders was considered. Feynman diagrams and ampli-
tudes have been generated with theFeynArtspackage [8, 9] and further processed with in-house
Mathematicaroutines, which automatically create an output inFortran. The IR (soft and collinear)
singularities are analytically separated from the finite remainder as described in Refs. [7, 10]. The
tensor integrals appearing in the pentagon diagrams are directly reduced to box integrals following
Ref. [11]. This method does not introduce inverse Gram determinants in this step, thereby avoid-
ing notorious numerical instabilities in regions where these determinants become small. Box and
lower-point integrals are reduced à la Passarino–Veltman [12] to scalar integrals, which are either
calculated analytically or using the results of Refs. [13, 14, 15]. Sufficient numerical stability is
already achieved in this way. Nevertheless the integral evaluation is currently further refined by
employing the more sophisticated methods described in Ref.[16] in order to numerically stabilize
the tensor integrals in exceptional phase-space regions.

Version 2 of the evaluation of loop diagrams starts with the generation of diagrams and ampli-
tudes viaQGRAF[17], which are then further manipulated withForm[18] and eventually automat-
ically translated intoC++ code. The reduction of the the 5-point tensor integrals to scalar integrals
is performed with an extension of the method described in Ref. [19]. In this procedure also in-
verse Gram determinents of four four-momenta are avoided. The lower-point tensor integrals are
reduced using an independent implementation of the Passarino–Veltman procedure. The IR-finite
scalar integrals are evaluated using theFFpackage [20, 21].

2.2 Real corrections

The matrix elements for the real corrections are given by 0→ tt̄gggg, 0→ tt̄qq̄gg, 0→ tt̄qq̄q′q̄′

and 0→ tt̄qq̄qq̄. The various partonic processes are obtained from these matrix elements by all
possible crossings of light particles into the initial state.

The evaluation of the real-emission amplitudes is performed in two independent ways. Both
evaluations employ the dipole subtraction formalism [22, 23, 24] for the extraction of IR singular-
ities and for their combination with the virtual corrections.

Version 1 results from a fully automated calculation based on helicity amplitudes, as described in
Ref. [25]. Individual helicity amplitudes are computed with the help of Berends–Giele recurrence
relations [26]. The evaluation of color factors and the generation of subtraction terms is automated.
For the channelgg→ tt̄gg a dedicated soft-insertion routine [27] is used for the generation of the
phase space.

Version 2 uses for the LO 2→ 3 processes and thegg→ tt̄gg process optimized code obtained
from a Feynman diagramatic approach. As in version 1 standard techniques like color decompo-
sition and the use of helicity amplitudes are employed. For the 2→ 4 processes including light
quarks,Madgraph[28] has been used. The subtraction terms according to Ref. [24] are obtained in
a semi-automatized manner based on an in-house library written inC++.

3. Numerical results

In the following we consistently use the CTEQ6 [29, 30] set ofparton distribution functions
(PDFs). In detail, we take CTEQ6L1 PDFs with a 1-loop runningαs in LO and CTEQ6M PDFs
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Figure 1: Scale dependence of the LO and NLO cross sections for tt̄+jet production at the Tevatron (left)
and at the LHC (right) as taken from Ref. [6], where the renormalization scale (µr ) and the factorization
scale (µ f ) are set equal toµ .
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Figure 2: Scale dependence of the LO and NLO forward–backward charge asymmetry of the top quark in
p p̄→ tt̄+jet+X at the Tevatron as taken from Ref. [6] withµ = µ f = µr .

with a 2-loop runningαs in NLO. The number of active flavours isNF = 5, and the respective QCD
parameters areΛLO

5 = 165MeV andΛMS
5 = 226MeV. Note that the top-quark loop in the gluon

self-energy is subtracted at zero momentum. In this scheme the running ofαs is generated solely
by the contributions of the light quark and gluon loops. The top-quark mass is renormalized in the
on-shell scheme, as numerical value we takemt = 174GeV.

We apply the jet algorithm of Ref. [31] withR= 1 for the definition of the tagged hard jet. Un-
less stated otherwise we require a transverse momentum ofpT,jet > pcut

T = 20GeV for the hardest
jet. The outgoing (anti-)top quarks are neither affected bythe jet algorithm nor by the phase-space
cut. Note that the LO prediction and the virtual correctionsare not influenced by the jet algorithm,
but the real corrections are.

In Figure 1 the scale dependence of the NLO cross sections is shown. For comparison, the
LO results are included as well. As expected, the NLO corrections significantly reduce the scale
dependence compared to LO. We observe that arroundµ ≈mt the NLO corrections are of moderate
size for the chosen setup.

We have also studied the forward–backward charge asymmetryof the top quark at the Teva-
tron. In LO the asymmetry is defined by
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At
FB,LO =

σ−
LO

σ+
LO

, σ±
LO = σLO(yt>0)±σLO(yt<0), (3.1)

whereyt denotes the rapidity of the top quark. Cross-section contributionsσ(yt
>
< 0) correspond to

top quarks in the forward or backward hemispheres, respectively, where incoming protons fly into
the forward direction by definition. Denoting the corresponding NLO contributions to the cross
sections byδσ±

NLO, we define the asymmetry at NLO by

At
FB,NLO =

σ−
LO

σ+
LO

(

1+
δσ−

NLO

σ−
LO

−
δσ+

NLO

σ+
LO

)

, (3.2)

i.e. via a consistent expansion inαs. Note, however, that the LO cross sections in Eq. (3.2) are
evaluated in the NLO setup (PDFs,αs).

Figure 2 shows the scale dependence of the asymmetry at LO andNLO. The LO result for the
asymmetry is of orderα0

s and does therefore not depend on the renormalization scale.The plot
for the LO result shows a mild residual dependence on the factorization scale, but the size of this
variation does not reflect the theoretical uncertainty, which is much larger. The NLO corrections
to the asymmetry are of orderα1

s and depend on the renormalization scale. It is therefore natural
to expect a stronger scale dependence of the asymmetry at NLOthan at LO, as seen in the plot.
The size of the asymmetry, which is about−7% at LO, is drastically reduced by the NLO correc-
tions. To investigate the origin of the large NLO corrections to the asymmetry we have studied the
dependence on the cut valuepcut

T used to define the minimalpT of the additional jet. The results
are shown in Table 1. We observe that both the NLO cross section as well as the NLO asymmetry
dependent strongly onpcut

T . This is related to the fact that the cross section becomes ill-defined in
the limit pcut

T → 0 due to the appearance of IR divergencies. On the other hand,the LO prediction
for the asymmetry shows only a mild dependence onpcut

T .

cross section [pb] charge asymmetry [%]
pcut

T [GeV] LO NLO LO NLO

20 1.583(2)+0.96
−0.55 1.791(1)+0.16

−0.31 −7.69(4)+0.10
−0.085 −1.77(5)+0.58

−0.30

30 0.984(1)+0.60
−0.34 1.1194(8)+0.11

−0.20 −8.29(5)+0.12
−0.085 −2.27(4)+0.31

−0.51

40 0.6632(8)+0.41
−0.23 0.7504(5)+0.072

−0.14 −8.72(5)+0.13
−0.10 −2.73(4)+0.35

−0.49

50 0.4670(6)+0.29
−0.17 0.5244(4)+0.049

−0.096 −8.96(5)+0.14
−0.11 −3.05(4)+0.49

−0.39

Table 1: Cross section and forward-backward charge asymmetry at theTevatron for different values ofpcut
T

used to define the minimal transverse momentumpT of the additional jet (µ = µ f = µr = mt ). The upper
and lower indices are the shifts towardsµ = mt/2 andµ = 2mt .

4. Conclusions

Predictions for t̄t+jet production at hadron colliders have been reviewed at NLOQCD. For the
cross section the NLO corrections drastically reduce the scale dependence of the LO predictions,
which is of the order of 100%. The charge asymmtry of the top quarks, which is going to be mea-
sured at the Tevatron, is significantly decreased at NLO and is almost washed out by the residual
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scale dependence. In addition we have also studied thepcut
T -dependence of the NLO predictions.

Further refinements of the precise definition of the forward-backward asymmetry are required to
stabilize the asymmetry with respect to higher order corrections.
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